

REAL-TIME SCRUBBING AND TRANSCRIPTION OF SCORE
MATERIALS USING SCORESCRUB

 Matthew C. Lane
 Université de Montréal

matthew.lane@umontreal.ca

ABSTRACT

The author presents his software, ScoreScrub, a
computer-assisted composition system used for
improvisatory real-time scrubbing of existing notated
musical material and its transcription. Employing
gestures received by a digital stylus and graphics tablet,
the user can improvise on fragments of existing music,
backwards or forwards, and at any speed by "writing"
on the original score. The improvised passages are
simulated in real-time through MIDI, then transcribed
and quantified to adapt them to performance by
musicians. The software features pitch, time, and real-
time orchestration controls, all of which can be
controlled by the vertical or pressure components of the
stylus movement, or by a MIDI-controller. The article
examines the compositional problem and inspiration that
catalyzed the software's creation, including some
existing technology and specific difficulties in the
traditional compositional process. Further explanation is
devoted to its specific goals and features, practical
concerns in its development, and finally, its use in a
piece that was premiered in the fall of 2016, entitled
"Lullabies for Boys Who Will Not Sleep Anyways.”

1. IMPROVISATORY COMPOSITION

There has long been a partial divide between the act
of improvisation and the act of composition in
instrumental music. While both are generative musical
processes, they tend to be perceived as having different
goals and different strengths. Kahneman’s
differentiation of thinking systems 1 and 2 provides a
simplistic means of regrouping these activities, with
system 1 encompassing the impulsive, the emotional,
and the automatic (improvisation),1 and system 2
encompassing the analytical, the weighted, the
structured (composition, although not without overlap).
[14] Indeed, Larson’s “traditional” definition of
improvisation perhaps fits best with my own experience
as a composer and performer:

“Improvisation is traditionally regarded as a process
in which performers, with their voice or instrument, in
‘real time,’ use luck or skill to respond to or incorporate
mistakes; the improvisation grows out of innovation,

1 This is not intended to disparage improvisation, or to depreciate the
high degree of learned instrumental skill, theory, and analysis involved
in improvisation. The meaning is to suggest that these characteristics:

exploits freedom, and relies on talent in an
instantaneous process that involves emotional invention
and intuitive impulse to create simple, direct
expressions.” [16]

Several of these attributes, including “emotional
invention and intuitive impulse,” as well as the response
to or incorporation of “mistakes” make the possibility of
composing in “real-time” appealing, even if the result is
not immediately available to an audience, as with an
improvisation. The required “talent”, however, that an
experienced jazz musician has, may place the possibility
of improvising or composing in real-time beyond the
aptitudes of many composers, not to mention the
challenge of notating an improvisation after the fact.
This difficulty is taken further when multiple planes of
tone are involved, often meaning multiple instruments,
or at least multiple independent lines.2

The need for immediate expression is not limited to
music. My personal experience from a young age
demonstrated the need to find means of expressing
myself faster than the speed of writing, and
psychologists recommended typing lessons for me at an
early age (in the early ‘90s, before such things were
widely taught in schools). Having followed me my
whole life, computers seemed a useful way of
surpassing the limitations of my natural speed of
transcription, whether with a pencil or with notation
software. Since my goal was to develop a tool for
composition, and not performance, it fell into the realm
of computer-assisted composition. This will be a
recurrent theme in this article: while the tool shares
features with a digital instrument, it is intended as one
step in the compositional process, and not for the
performance of music. The term “improvisatory
composition” has been helpful in explaining this system.

2. TRACING THE ROOTS OF SCORESCRUB

2.1. Scrubbing

The aforementioned challenge has a multitude of
possible solutions, so some explanation is useful as to
why scrubbing with a digital stylus and graphics pad

2 “Planes of tone,” [3] a concept from Alan Belkin’s treatise on
orchestration (and reportedly from D.F. Tovey) refers to any
instruments, voices within an instrument, or group of instruments
sharing a “rhythmic outline.”

was eventually chosen as the means to improvisatory
composition.

“Scrubbing”, for our purposes, represents the ability
to move backwards and forwards in a sound (or
sometimes video) freely in real-time, and at varied
speeds. It also allows jumping to different points in an
audio or video stream. Figure 1 shows how scrubbing
could work for notated music, with arrows representing
the movement through the source material.

The idea of scrubbing is not new: the concept derives
from “scrubbing” tape across the magnetic head [21],
and has been adopted by DJ’s, most waveform editors,
and most recently, cellphones. The notation software
Finale even contains a similar little-known feature,
allowing users to scrub across segments of their score
either forwards or in reverse, and at different speeds.
[12]

A number of more powerful research-based
scrubbing systems also exist, although primarily for
sound. Some, such as DiMaß, scrub audio with high
fidelity at the original pitch [17]. Some composers have
also developed similar structures for electronic music
improvisation, such as Doug Van Nort's greis system
[21], or the Bricktable system by Hochenbaum and
Vallis [11]. Some research has even explored the
addition of haptic feedback to audio scrubbing devices
[7].

Many other creative interfaces resembling scrubbing
tools exist for both sound and notation, although most
are generative instead of using existing musical
material, and a large proportion of them are devoted to
performance as opposed to CAC. Devices like
ReacTable [13] or Small Fish Tale [9] share some of the
gestural control elements of a scrubbing mechanism, but
don’t work with existing material as much as producing
new material. They also work primarily with sound,
although MIDI outputs mean they could be easily be
adapted to produce scores.

IMPI enables a conductor to draw a score in real-time
for performers [9], but is still primarily for generating
new material rather than scrubbing existing material. It’s
gesture paradigm and capacity for producing scores,
however, resemble what one might do while scrubbing,
and some of it’s mapping characteristics are similar to
the concept of plugins explored in section 3.2.

CAC-devices exist that allow processes similar to
scrubbing, like the drawing of musical lines in Moz’Lib
[10]: here, like with scrubbing, the temporal aspect can
be controlled, and one has visual and audio feedback,
but again, it is ultimately concerned with the production
of new material than the reinterpretation of existing
material. Musink [19] does work with existing material,
allowing one to augment a score digitally, but does not
deal with the movement back and forth in time like
scrubbing does. And OpenMusic programs like those
used in some of Philippe Leroux’s works (see section
2.2 for more on this) are again generating new material
rather than working with existing material.

The idea of scrubbing scores was attractive because it
would allow the user to work with existing material,

both creating unity in a final result, and allowing the
composer/improviser to focus on the movement of the
material instead of the creation of material itself. Little
would be required in terms of musical instrument skill,
allowing what Wessel and Wright referred to as “low
entry fee with no ceiling on virtuosity”. [24] Much like
jazz players might use a rhythmic motive and a scale as
a means of improvising, the user could do the same
without the instrumental expertise.

Figure 1 An example of how notation scrubbing

might look.

Improvising based on existing material provides
other advantages. One can improvise with many layered
and independent lines (imagine improvising from
sections of a fugue or a complex orchestral work). One
is not limited to the “one gesture to one acoustic event”
model of traditional instruments. [24] Also since the
process would not ultimately be “generative”, as is often
the case in electronic improvising instruments, [24] but
rather “transformative”, certain kinks could be easily
worked out in advance. Impossible notes may be
excluded from the source material, as may be
unbalanced textures, for example. Other idiomatic
instrumental issues can be avoided before the
improvising even begins.

Most modern devices allowing scrubbing also
incorporate a visual interface allowing you to view a
waveform, a concept that translated well since western
instrumental composers are generally used to composing
in a visual domain, with an x-axis that more or less
represents time.

2.2. Digital stylus and graphics pad

To scrub, a graduated axis of some sort is required. It
could be a slider, an arm movement, even a pressure
gradient. Any number of input devices could be used to
control such scrubbing software, with the two main
categories being those that exploit existing motor
control abilities, and those deliberately avoiding
previously learned motor-control abilities. [23] While
there are advantages to working in a completely new
paradigm, I sought to capitalize on the association many
composers already have between a score and a pen.
Such a stylus system, like that in Figure 2, could be
directly linked to the score sample displayed on the
screen, exploiting an existing link between score-

creation and pen use, in the same way computer users
automatically link between a mouse movement and its
screen placement. The same x-axis that represents time
in a score could be translated to the graphics pad’s x-
axis.

Figure 2 Wacom digital stylus and graphics pad

Finally, modern graphics tablets can sense a pressure
gradient, allowing a third axis of control from a single
point. It’s one of the most concentrated means possible
to send three axes of data with a single hand, while
sitting comfortably at a desk (not including, for
example, the use of motion sensors).3

Using tablets as a generative or transformative source
for instrumental music has also been well-documented
for instrumental works like Philippe Leroux’s
Apocalypsis. [22] More recently, Leroux’s piece Quid
sit musicus even used real-time features in OpenMusic
to produce instantaneous visual and audio feedback of
pen gestures [9], similar in some respects to features that
would be desirable for scrubbing software.

3 Several composers, for example have made use of the Kinect software
for XBox 360 in order to generate instrumental scores [4]

2.3. Personal influences and ideas

Several factors specific to my process contributed to
the planning for this software. Firstly, it is very much a
real-time extension of previous research-creation I did
using break-point-functions to generate progressions
from existing musical motives. [15] Many of the
components of this software are near-copies of similar
processes developed earlier in OpenMusic.

 Since my work has so long lived in a space between
the electronic and instrumental worlds, I’ve long sought
to transfer or “transpose” concepts from electronics. My
composition tends to be instrumental, or electronic
within an instrumental paradigm, but my history with
computers-based processes is extensive.

One of these transpositions is “effects”, similar to
plugins: a hallmark of any DAW is the processes that
can be applied in real-time to a sound source.
ScoreScrub explores some of the possibilities for how
this might work in an instrumental context. While
certain notation software already allows plugins, they
are generally static. A real-time application of, for
example, pitch shifting based on pen pressure is possible
in this system.

Finally, elements of my style dictated some of the
direction taken by the software. The use of scrubbing
was ultimately conducive to techniques like cross-
cutting (think Stravinsky, Michael Finnissey [1], or
Elliot Carter [6]) due to the ability to jump around freely
in a score sample. The development of short, motivic
rhythmic gestures are also well served by this system,
due to the ease of repeating or slightly altering short
fragments using impulsive, quick gestures.

Figure 3 The main window of ScoreScrub

3. SCORESCRUB FEATURES

ScoreScrub was developed in MaxMSP using bach
automated composer’s helper for reasons that will be
explained in Section 4. First, however, it is worth
examining which functions4 were desired by the author,
and how they were eventually implemented in the
program. These functions are broken down into three
categories of importance, representing the author’s
approach to designing the software:

• Primary functions are those that define the
software, and serve as the basis for what it
was intended to do.

• Secondary functions provide additional
capabilities to the primary functions,
significantly increasing the possibilities for
what the software can do.

• Tertiary functions enhance the software,
streamlining tasks, but do not fundamentally
change the capacities of the program.

These are explained from the standpoint of a
composer, but for those interested in the program’s
architecture, a link for the source code may be found at
the end of the article.

3.1. Primary functions

While not intended as an electronic performance
instrument, but rather as a tool for CAC, I wanted the
program to incorporate certain characteristics of the
former to better respond to the impulsive gestures of the
composer. The first primary function required by the
software, in order to function with some of the
capacities of an “instrument” for computer-assisted
composition, was immediate auditory feedback of what
is being scrubbed, obviously including feedback of any
effects applied the material. To make it useful as
computer-assisted composition, it required a practical
transcription function. Finally, like an instrument, it

4 The term function here should not be confused with the programming
term, but comes from the value analysis definition as “the purpose that
a product, project or process is expected to perform” [20].

should have a silencing feature, which was easily
accomplished by detecting when the pen was lifted. [24]
These combined factors serve to create a link between
the physical motion and the auditory/visual feedback.

The scrubbing window simply looks like a score
without rhythm markings, since rhythm is completely
proportional. (Figure 3) A small green circle, referred to
as the “cursor” (between staves 4 and 5, to the left, in
Figure 3), indicates the location of the stylus on the
score. In this basic mode of functioning, dragging the
pen left across the pad (and thus moving the cursor left
across the screen) will essentially play the passage in
reverse, and moving the pen right will play forwards.
(see Figure 1 for clarification) Depressing the pen will
attack the notes, and lifting it will release them. The pen
position on the y-axis, or the pen pressure may be
assigned to other secondary functions, such as volume
or transposition.

In terms of quantification of the scrubbed score
segments, “practical” was the key requirement. While
many algorithms exist for quantification, if a truly
performable musical work is sought, a balance must be
reached between absolute perfection and playability.
The quantification window of the software initially
records the performance in timed notation, and the
composer can subsequently test quantifications with
varying tempos and time signatures to find the variant
that suits the score best. (Figure 4)

3.2. Secondary functions

The most important secondary feature for my music
was the possibility of dynamically cycling through
portions of a passage. Like in a DAW, a certain passage
can be cycled repeatedly, which suits much of the
obsessive and juxtaposition-laden music I compose. But
in the case of ScoreScrub, the cycled region can be
moved dynamically. In cycling mode, as the stylus
hovers over the pad, a red box appears showing the
region to be cycled, with the pen’s location designating
the start point, and the pressure or the vertical axis
designating the length. (Figure 3, the box is gray in the
image and covers the leftmost portion of the score) Then

Figure 4 Recording and quantification window

when the pen is depressed, the software will begin
cycling through (and playing and transcribing) the
highlighted passage. If the pen’s placement is adjusted
while it plays, the cycling region will be adjusted when
the next cycle starts, with the user receiving a preview
of this location via the red box. Finally, the cycling
stops when the pen is lifted.

This concept expands on one of the several ways
scrubbing can work in the digital world. In some cases,
scrubbing works through resampling or time-stretching,
but in other cases it works through “skipping”: playing a
short fragment from one section at a time as the cursor
moves. [17] Here this concept is simply expanded to a
much larger time sample, more representative of
instrumental music than pure sound. It could also be
seen as a form of macro-granulation.

Figure 5 Orchestration/instrument routing window

The next most significant feature was some limited,
but useful, dynamic orchestration. A matrix is used to
route “input instruments” (the staves on the original
score material) to “output instruments” (the staves on
the final transcription, and the simulated instruments),
with certain specific possible transpositions. (Figure 5)
For example, the flute from the original score segment
could be sent out for playback and transcription by the
clarinet, but transposed down an octave. Or perhaps
some instruments should cut out completely during
some segments. A number of presets, controlled by the
number keys, trigger dynamic switching between
different “orchestrations”, allowing the juxtaposition of
different textures or levels of depth to the music.

Effects, similar to plugins, as mentioned above, play
a significant part in the program. Much like the kind of
processes that can be accomplished in software like
OpenMusic, certain effects were created to allow
altering the pitch or rhythm in different ways in real
time. In most cases, the user can control which
instruments are affected, and the degree of the effect can
be mapped to the y or z (pressure) axes of the tablet, or
to a MIDI-controller. Table 1 shows the effects
currently functional, how they change the scrubbed
music (Main Function), and which parameters are
available to the user for more detailed control.

Effect Main

Function
Parameters and Control

Velocity The output
notes’
velocities
(volumes) are
changed.

The velocity is controlled by a
stylus-axis or MIDI-controller.

Delay Delays each
instruments by
different
millisecond
amounts.

Individual delays are supplied for
each instrument. Lengths of
delays can be influenced by a
coefficient based on a stylus-
axis5 or MIDI-control.

Repetition Causes held
notes to be
repeated after a
specific
millisecond
amount.

Repetition time can be influenced
in real-time by a stylus-axis or
MIDI-control. Can be bypassed
for some instruments.

Semitonal
transposition

Transposes the
output by a
variable
number of
semitones.

The transposition is controlled by
a stylus-axis or MIDI-controller.
The upper/lower transposition
bounds and a transposition curve
function can be set. Like all
pitch-related functions, the effect
may bypass certain instruments,
and it may be set to only change
between cycles in cycling mode.

Specific
interval
transposition

Transposes the
output by one
of a number of
specific
intervals.

A stylus-axis or MIDI-controller
determines which transposition
interval is used. The number of
transposition intervals may be
changed and the intervals
themselves may be adjusted (ie.
3,7, and 12 semitones up).

Frequency
shifting

Frequency-
shifts the
output.

A stylus-axis or MIDI-controller
changes the modulator frequency.
The upper and lower modulator
frequency bounds, as well as a
curve function, can be set.

Constrain to
mode

All output
(after other
processes) is
constrained to a
specified mode.

The mode or pitch-field can be
set by the user.

Table 1 Effects in ScoreScrub

3.3. Tertiary functions

Other features were slowly added to encourage a
more fluid creative process. The most obvious were
features for easy importation from existing scores via
MIDI or XML, and the subsequent exporting of a
transcribed result in similarly portable formats.

As the program became more sophisticated, the next
feature was a preset mechanism for the retrieval of
existing setups, including the source files used, the
layout, the effects mappings, and orchestration presets.

For more rhythmic music, and for better precision,
adjustable gridlines and grid-snapping were both added,
allowing the maintenance of rhythmic integrity from the
original material.

5 A stylus-axis refers to either the y or z (pressure) axes on the graphics
tablet.

3.4. Further features

Following is a brief list of further features that were
added to further facilitate the computer-assisted
composition process:

• MIDI-device mapping: this feature allows
external MIDI-controllers the possibility of
controlling various parameters. (Figure 6)

• Prevent overlapping notes: scrubbing scores
often works best without overlapping notes.
(when scrubbing backwards, a note’s release
becomes its attack)

• Horizontal zoom and begin/end times for the
score window.

• Two types of mouse scrubbing, in case a
stylus and tablet is unavailable.

• A metronome, linked with the temporal grid
being used.

• Buttons to both “freeze” the music in
cycling mode, and to re-attack all held notes.

Figure 6 MIDI-controller interface (one of 3

possible device inputs)

4. PRACTICAL CHOICES IN DEVELOPING
SCORESCRUB

4.1. MaxMSP

Due to the real-time nature of these goals and the
desired graphics interface, MaxMSP was a logical
starting point for the software. Low latency is crucial to
any type of improvisatory instrument [24], and while
software like OpenMusic has recently expanded into
some real-time processing,6 there are still issues better
solved in audio-processing software like Max or
PureData.

MaxMSP is designed with some flexibility in terms
of input and output, working well with MIDI controllers
and external midi devices (for simulation). The relative
ease of programming and reliability of Max made it a
fairly straightforward choice, but enhancing that were

6 This refers to the “reactive” features that have been added to
OpenMusic. [5]

two existing Max programs that were essential to the
software.

The first was the s2m.wacom patch, which interfaces
with the Wacom/Intuos stylus and tablet that is currently
the most easily available in North America.7 The patch,
written by Charles Gondre from CNRS-LMA, retrieves
all the necessary information from the tablet at regular
intervals, including x, y, and z values, and any buttons
pressed, saving significant amounts of reprogramming.

4.2. bach automated composer’s helper

MaxMSP, however, lacks a built-in notation
interface, of the kind that might be found in OpenMusic,
engraving software, or even most DAWs. bach
automated composer's helper, by Andrea Agostini and
Daniele Ghisi, is a powerful Max-based engine designed
with computer-assisted composition in mind, and it
enables full notation integration in MaxMSP. [1] bach
uses a similar structure to LISP, the base language of
OpenMusic, and all score materials can be controlled
and retrieved via Lisp-like-linked-lists (lllls).

This made the transition from OpenMusic especially
easy, and allowed me to incorporate some of the same
processes I had used previously without significant
reprogramming. They could now, however, be applied
in real-time, with a versatile visual interface. The
notation objects in bach could function as a high-level
graphics user interface to control the real-time MIDI-
simulation, and to send the necessary material for
transcription as a new score.8

4.3. Compromises and drawbacks

While the software has thus far achieved most of its
intended goals, there remain some limitations, and they
merit a short discussion:

4.3.1. Processing power

The software requires significant processing power,
due to the extensive visual processes, sequencing
effects, and audio feedback required to function in real-
time. It is not ready yet for low-powered laptops, and
certainly not tablets.

While the latency occasionally passes the 7-10 ms
suggested by Wessel and Wright for digital instruments,
and variations in latency can surpass the suggested 1 ms
[24], internal time-code tags have helped reduce the
effects of this in the final transcription of an
improvisation.

7 A simple glance at Amazon’s best sellers list, and the inventory at
most Canadian computer stores, makes it clear that for the moment,
this is the most easily available of such tablets.
8 In the final program architecture, it was not efficient to use the bach
object as the actual user interface. Instead, an invisible layer (a Max lcd
object) above the bach.roll object interacts with the input device,
giving the impression that the user is directly influencing the bach
object.

Even with time-codes, however, quantification over
long improvisations can become imperfect. While, in
the author’s music, the software was only intended for
short-medium length sections (ie. up to 2 minutes), this
may eventually pose a problem for longer sequences.

4.3.2. Digital stylus and graphics tablet required

The software's greatest asset, the pen-based interface,
also requires an additional hardware investment. And
due to the adjustable scaling of the score interface, the
difficulty in pinpointing a precise musical gesture can
change drastically between setups.9 While this provides
significant flexibility, it can also mean relearning a new
"instrument" with each piece, similar to moving
between a violin and a viola, for example.

4.3.3. Sound libraries required

The software's output is in MIDI, passing through the
computer’s IAC busses (or directly to a 3rd party MIDI-
bus, as the case may be). Consequently, quality
feedback from the score section being sampled requires
quality sounds. Many instrumental composers, however,
regularly work with such sound libraries (in conjunction
with their notation software or otherwise), so this
doesn't necessarily present a further investment. In a
worst-case scenario, the computer's default MIDI
program may still provide a decent enough
approximation for compositional improvisation.

4.3.4. Counterpoint

The most significant musical consideration, and one
that will ultimately restrict the software's use to only
certain compositional practices, is its inability to handle
true counterpoint. This is due to the singular x-axis

9 Different zoom factors create varying results of Fitt's law. See [23]

control for time, meaning all music moves implacably
together in most cases.

Incorporated effects such as varied delays for
different instruments can create a sense of counterpoint,
but the voices are still ultimate interdependent.

For one piece in which I made use of ScoreScrub,
Short Pieces on Falling: Waves, contrapuntal source
material was used for scrubbing with some success.
Each time a motive in one voice returns, however, the
associated counterpoint in other voices consequently
returns, and the ideas become inextricably linked for the
listener. They thus shed some of their independence.
There is room for more contrapuntal adaptability in the
future, however, with the increasing availability of
multi-touch track pads and graphics tablets.

5. LULLABIES FOR BOYS WHO WILL NOT
SLEEP ANYWAYS

The fourth movement of Lullabies for Boys Who Will
Not Sleep Anyways made extensive use of ScoreScrub in
its final section. The work is composed for piano, toy
piano, and fixed audio. The fixed audio part consists,
amongst other sounds, of four additional artificial
instruments created from sampled toy instruments, in
some cases processed with velocity- or pitch-dependent
effects. In all, this allowed for a virtual ensemble of six
instruments.

The source material inputted into ScoreScrub (Figure
7) was a set of subjects and countersubjects: 6
superposable melodies, each with three states of
complexity (from simple and transparent, to complex
and busy).

5.1. ScoreScrub setup

For this piece, the cycling mode was used, with a
snapping-grid, to bring out the strongly rhythmic and
motivic nature of the source material. In cycling mode,
music always plays forward locally, but the sections

Figure 7 Lullabies... source material for ScoreScrub

being played can jump around and their respective
lengths can change based on pen movement. The x-axis
of the pen therefore controls the starting point of the
segments being played, and the y-axis controls the
length of each segment played (considered as a sort of
macro-granulation for notation, the y axis controls the
sampling window).

The z-axis, or pressure, in this case controlled a
frequency shifting effect, which was applied only to
three of the instruments (in this case, the synthetic
instruments, and not the human-played instruments).
With some spectral effects applied to the instruments,10
it allowed the creation of a cloud of quasi-instrumental
sound that floated around in pitch during repetitive bits
in the instrumental part. The frequency shifting of each
pitch was from 0-300 Hz, depending on the pressure (0-
1). The formula could be written as follows: (where F1
is the initial note frequency, Z is the pressure axis from
0 to 1, and F2 is the final frequency):

F2 = F1 + (300Hz× Z)

Finally, a set of orchestration presets was established

to allow dynamic instrument starting, stopping,
transposition, and routing. In the preset shown (Figure
5), instrument 1’s material is routed to instrument 5 at
the same pitch, instrument 2’s material is routed back to
instrument 2 two octaves higher, and instrument 4’s
material is routed to instrument 3 an octave lower.

10 This was done using Michael Norris’ Soundmagic Spectral plugins, a
freeware suite of plugins capable of real-time spectral processing.

Finally, instrument 3’s material is routed to instrument 1
at pitch.

5.2. Results and further editing

The scrubbing process was undertaken several times,
each time with nearly complete freedom of
improvisation, but the awareness that, like a recording
sessions, more takes were easily possible. The only
structure planned was several alternations between high-
and low-pitched valenced textures, and an eventual
progression towards obsession.

In the final performance score, only the piano and toy
piano parts are shown, but Figure 8 shows an
approximation of what all the instruments do in one
passage. Note the obsessive returns of motives, as well
as the change of orchestration preset partway through
the second measure.

Small changes were subsequently made to the score
to achieve the result sought in the improvisation, but for
which the software did not provide sufficient flexibility.
For example, in some cases, instead of the orchestration
being changed abruptly, it was altered to transition more
gradually. In some cases, on re-listening, a beat was
added or removed, or a pedal tone was added in an
instrument.

It is, after all, computer-assisted composition, and not
simply computer composition. The final say in my
instrumental music say should always belong to me, and
should be able to transcend the limits of whatever
software is used, only constrained by the limitations of
the performers and the imagination.

Figure 8 Material generated in ScoreScrub for Lullabies for Boys Who Will Not Sleep Anyways

6. FINAL THOUGHTS

ScoreScrub has thus-far proved to be a intuitive,
responsive and even musical interface in five different
works, providing the tools needed to improvise
segments of compositions based on composed source
material. The results have proven to be playable,
interesting, and requiring little post-export editing.

For the author, few features are lacking that would
make the software more intuitive without making it
significantly more draining on the system, or more
complex to set up and use. Out-of-the-box usability is
crucial in the creative process, and one of the most
important functions the software provides is a means to
hopping over the analytical programming process
directly to the intuitive improvising process.

The software is now ready for open beta-testing,11
and several suggestions are already being considered for
the next version, including micro-tonality, dynamic
pitch adjustment (glissandi, for example), and the
incorporation of electronics parts.

Like any improvisational or creative tool, the proof is
in the composer’s sense that the device can capture their
intuitive expression. So far, the signs are positive, but it
will take more composers to truly judge.

7. REFERENCES

[1] Agostini, A. and Ghisi, D. “A Max Library for
Musical Notation and Computer-Aided
Composition”, Computer Music Journal, Volume 39,
No. 2, p. 11–27, 2015.

[2] Beirens, M. “Archaeology of the Self: Michael
Finnissy's 'Folklore'”, Tempo, Cambridge University
Press, Vol. 57, No. 223 (Jan.), p. 46-56, 2003.

[3] Belkin, A. “Basic Notions, Part 2”, Orchestration.
http://alanbelkinmusic.com/site/en/index.php/orchest
ration/, 2001.

[4] Berg, T. et al. “Interactive Music: Human Motion
Initiated Music Generation Using Skeletal Tracking
By Kinect”, Proceedings of the Conference for the
Society Electro-Acoustic Music in the USA,
https://vision.cs.unc.edu/home/publications/kinect_
music.pdf, 2002.

[5] Bresson, J. Reactive Visual Programs in OpenMusic.
[Research Report] IRCAM, https://hal.archives-
ouvertes.fr/hal-01142078/document, 2014.

[6] Bye, A. “Carter in Context”, Tempo, Cambridge
University Press, No. 176 (Mar.), p. 61-62, 1991.

[7] Chu, L. Haptic Interactions for Audio Navigation.
Ph.D. Dissertation. Stanford University, Stanford,
CA, USA, 2004. Chris Chafe, advisor.

[8] Deliège, C. “Indétermination et improvisation”,
International Review of the Aesthetics and Sociology
of Music, Croatian Musicological Society, Vol. 2,
No. 2 (Dec.), p. 155-191, 1971.

[9] Garcia, J. et al. “pOM: Linking Pen Gestures to
Computer-Aided Composition Processes”, 40th

11 A beta version is available at www.matthewclane.com, along with
source patches that reveal more of the program’s internal architecture.

International Computer Music Conference (ICMC)
joint with the 11th Sound & Music Computing
conference (SMC), Sep 2014, Athens, Greece. 2014.

[10] Ghisi, D. et al. “Extending bach: A Family of
Libraries for Real-time Computer-assisted
Composition in Max”, Journal of New Music
Research, 46:1, p. 34-53, 2017

[11] Hochenbaum, J. et al. "Bricktable: A musical
tangible multi-touch interface." Proceedings of the
Berlin Open, 2009.

[12] Johnson, T. “Scrubbing Your Music?”, Finale
Blog, http://www.finalemusic.com/blog/scrubbing-
your-music/, 2010.

[13] Jordà, S. et al. "The reacTable: exploring the
synergy between live music performance and
tabletop tangible interfaces." Proceedings of the 1st
international conference on Tangible and embedded
interaction. ACM, 2007.

[14] Kahneman, D. Thinking Fast and Slow. Anchor
Canada, 2013.

[15] Lane, M. “Programming modular progressions
in OpenMusic” The OM Composer’s Book 3, ed.
Bresson, J. et al., IRCAM, Paris, p. 55-75, 2016.

[16] Larson, S. “Composition versus Improvisation?”
Journal of Music Theory, Duke University Press on
behalf of the Yale University Department of Music,
Vol. 49, No. 2 (Fall), p. 241-275, 2005.

[17] Lee, E. et al. “DiMaß: A Technique for Audio
Scrubbing and Skimming using Direct
Manipulation” Proceedings of the 1st ACM
workshop on Audio and music computing
multimedia. ACM, 2006.

[18] Lee, E. et al. “Improving Interfaces for
Navigating Continuous Audio Timelines”, Media
Computing Group at RWTH Aachen University.
https://hci.rwth-aachen.de/materials/publications/
lee2007b.pdf, 2007.

[19] Tsandilas, T. et al. “Musink: Composing Music
through Augmented Drawing.” International
conference on Human factors in computing sys-
tems, Boston, United States. p. 819-828, 2009.

[20] Value Analysis Canada. “Value Analysis
Definitions”, Value Analysis Canada,
http://www.valueanalysis.ca/vadefinitions.php?lang=
en, 2015.

[21] Van Nort, D. “Multidimensional Scratching,
Sound Shaping and Triple Point”, Leonardo Music
Journal, The MIT Press, Vol. 20, p. 17-18, 2010.

[22] Vassilandonakis, Y. and Leroux, P. “An
Interview with Philippe Leroux”, Computer Music
Journal, The MIT Press, Vol. 32, No. 3 (Fall), p. 11-
24, 2008.

[23] Wanderley, M. M. and Orio, N. “Evaluation of
Input Devices for Musical Expression: Borrowing
Tools from HCI”, Computer Music Journal, The
MIT Press, Vol. 26, No. 3 (Autumn), p. 62-76, 2002.

[24] Wessel, D. and Wright, M. “Problems and
Prospects for Intimate Musical Control of
Computers”, Computer Music Journal, The MIT
Press, Vol. 26, No. 3 (Autumn), p. 11-22, 2002.

